닫기

- 한국융합보안학회 로그인 화면입니다. -

닫기

한국융합보안학회

홈으로 I 로그인 I 회원가입 I 이메일

자료실 HOME  •  자료실  •  학회지

융합보안논문지, Vol.21 no.2 (2021)
pp.11~18

DOI : 10.33778/kcsa.2021.21.2.011

- Netflow를 활용한 대규모 서비스망 불법 접속 추적 모델 연구 -

이택현

(서울과학기술대학교 IT정책전문대학 산업정보시스템)

박원형

(상명대학교 정보보안공학과)

국광호

(서울과학기술대학교 기술경영융합대학 글로벌융합산업공학과)

대다수의 기업은 유무형의 자산을 보호하기 위한 방안으로, IT서비스망에 다양한 보안 장비를 구축하여 정보보호 모니터링 을 수행하고 있다. 그러나 서비스 망 고도화 및 확장 과정에서 보안 장비 투자와 보호해야 할 자산이 증가하면서 전체 서비스 망에 대한 공격 노출 모니터링이 어려워지는 한계가 발생하고 있다. 이에 대응하기 위한 방안으로 외부자의 공격과 장비 불법 통신을 탐지할 수 있는 다양한 연구가 진행되었으나, 대규모 서비스망에 대한 효과적인 서비스 포트 오픈 감시 및 불법 통신 모니터링 체계 구축에 대한 연구는 미진한 편이다. 본 연구에서는 IT서비스망 전체 데이터 흐름의 관문이 되는 네트워크 백본 장비의 ‘Netflow 통계 정보’를 분석하여, 대규모 투자 없이 광범위한 서비스망의 정보 유출 및 불법 통신 시도를 감시할 수 있 는 프레임워크를 제안한다. 주요 연구 성과로는 Netflow 데이터에서 운영 장비의 텔넷 서비스 오픈 여부를 6개의 ML 머신러 닝 알고리즘으로 판별하여 분류 정확도 F1-Score 94%의 높은 성능을 검증하였으며, 피해 장비의 불법 통신 이력을 연관하여 추적할 수 있는 모형을 제안하였다.

A Study on the Detection Model of Illegal Access to Large-scale Service Networks using Netflow

Taek-Hyun Lee

WonHyung Park

Kwang-Ho Kook

To protect tangible and intangible assets, most of the companies are conducting information protection monitoring by using various security equipment in the IT service network. As the security equipment that needs to be protected increases in the process of upgrading and expanding the service network, it is difficult to monitor the possible exposure to the attack for the entire service network. As a countermeasure to this, various studies have been conducted to detect external attacks and illegal communication of equipment, but studies on effective monitoring of the open service ports and construction of illegal communication monitoring system for large-scale service networks are insufficient. In this study, we propose a framework that can monitor information leakage and illegal communication attempts in a wide range of service networks without large-scale investment by analyzing ‘Netflow statistical information’ of backbone network equipment, which is the gateway to the entire data flow of the IT service network. By using machine learning algorithms to the Netfllow data, we could obtain the high classification accuracy of 94% in identifying whether the Telnet service port of operating equipment is open or not, and we could track the illegal communication of the damaged equipment by using the illegal communication history of the damaged equipment.

다운로드 리스트